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ABSTRACT

Lamberson, Steven Edward. Ph.D., Purdue University, August 1985.
Equivalent Continuum Finite Element Modelling of Plate-like Space
Lattice Structures. Major Professor: Henry Yang.

A variety of research projects are being pursued involving the

dynamics and control of large plate-like s ce platforms made up

of repetitive lattice-type truss structures. A method involving

finite element modelling of an equivalent continuum formulation

based on matching the strain energy and kinetic energy is developed

for truss type lattices with pinned joints. The method is shown to

give modal results consistent with those obtained using detailed

finite element modelling of the pin jointed space lattice structure,

even for structures with fairly small numbers of repetitions of an

identical unit cell. Feedback controllers designed using reduced

system models derived from these modal results using Modal Cost

Analysis are shown to perform as well as controllers designed using

the detailed analysis results.

The efficiency of this method for coupled structure, control

system design is demonstrated with a parametric study. Lattice plate

finite elements are used to examine the effect of variation of

several fundamental structural parameters on the natural frequencies

and mode shapes of the structure. Feedback control systems are

designed and the resulting system performanc* evaluated by
-'.t7
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examining the steady state regulation cost of the structure as a

function of the structural design parameters.

A micropolar plate continuum model of large plate-like repetitive

space lattice structures with rigid joints is derived. A plate finite

element is derived based on this continuum model with micropolar

rotations and transverse shear deformations included as nodal degrees

of freedom-.(. The natural frequencies and mode shapes are

calculated using this element for a free floating hexahedral plate-like

space lattice structure. These natural frequencies and mode shapes

are compared to those calculated using a detailed finite element

model (with every structural member modelled by a beam-column

element) for several sets of frame member cross sectional properties.

The static deflections of a centrally loaded and corner supported

rectangular plate-like space lattice structure are also obtained and

compared using these two types of structural models.
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CHAPTER I - INTRODUCTION

Problem Statement

Now that the shuttle has made access to space more economical,

many projects are being proposed which involve large space platforms

made up of lattice-type truss structures. These structures are

generally too flexible to meet the mission requirements and automated

control systems must be used both to maintain the structures' orienta-

tion and to reduce vibrations of the structure. Often, these large

space structures are made up of a simple cell of truss bars repeated

a large number of times in one or two directions. The resulting

structure resembles a beam or a plate when viewed from a distance.

Detailed finite element models of such truss structures have a large

number of degrees of freedom (d.o.f.'s), which are cumbersome and

expensive to use in modal analysis even when dynamic substructuring

and reduction methods are used extensively. An alternative method

is to derive a plate finite element model based on an equivalent

continuum formulation which is used to perform the modal analysis.

In either case the modal model generated must be reduced to an

evaluation model of a size which can be used to evaluate the

effectiveness of various control systems. The modal model must also

be reduced further to a series of design models which are used to

design feedback control systems. For large lattice-type space truss
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*. ;.. structures the order of the detailed finite element model, the order

of the solvable eigenvalue problem, the order of the solvable control

system evaluation model, and the order of the controller which can

be implemented usually from a rapidly decreasing monotonic sequence.

The object of this research is to develop equivalent plate finite

elements based on equivalent continuum representations of large

plate-like space lattices. The resulting equivalent plate finite

elements are shown to be accurate, flexible, and efficient. They

are also demonstrated to be useful in designing and evaluating the

closed loop system performance of large repetitive plate-like space

lattices with reduced order controllers.

Structural Modelling Methods

Background

There have been many studies examining finite element modelling

methods of various types of structures which will yield accurate

modal results. There have also been a variety of methods developed

to allow progressively larger finite element models to be used for

modal analysis. In general, this is done using some means of model

reduction. Several methods have been developed to allow large finite

element models (which are discrete representations) to be reduced to

smaller mathematical models (which are also discrete representations).

.4 These methods range from heuristic techniques such as Guyan

reductionI which rely heavily on the user's experience for accuracy,

to iterative techniques such as generalized dynamic reduction2, which

effectively eliminate the need for an experienced user at the expense

, °* * ***
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of substantially increasing the computational cost. Other techniques

involve breaking the structure up into substructures which are

analyzed dynamically using a system modelling technique such as

ri- Component Modal Synthesis.3  Basically, this involves developing

a modal model of each of the subcomponents, then combining these

,.. individual modal models into a system model whose only physical

d.o.f.'s are the boundaries connecting the various substructures.

The remaining d.o.f.'s are those representing the modal coordinates

". of the individual substructures. The principle problem with this

- method is that it is often difficult to determine which modes of a

substructure will contribute to the modes of the entire structure

which are within the desired frequency bandwidth. Therefore, while

the available techniques have increased the order of finite element

models of structures that can be utilized to perform structural

vibration analysis, there are sufficient difficulties associated

with each reduction method to require that the original finite

element model of the system be generated using the minimum number of

4d.o.f.'s consistent with generating an accurate solution

Since many of the large flexible space structures being

considered are built on a platform which is a space lattice

consisting of truss type members connected together in a repetitive

manner, several methods have been developed to allow the repetitive

it space lattice to be modelled as an equivalent continuum. The first

of these applies static loads to a model of a unit cell of the

repetitive space lattice in such a way that the displacement

calculated can be used to determine one or more of the "equivalent"

J...
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properties.5  Another method is to calculate the equivalent properties

based on the number of truss elements within the unit cell aligned

in each direction.6 A third method matches the strain energy of the

unit cell in terms of a Taylor's series expansion of the midplane

displacements with the strain energy of the unit cell in terms of a

Taylor's series based on the midplane strains.7 The existing work

has focused on predicting the vibration modes of simply supported

truss lattices with pinned joints. There has been some work with

simply supported "beam-like" lattices with the frame members connected

by rigid joints which makes use of the higher order micropolar beam

continuum formulation.
8

Detailed Models

For this research the baseline against which the performance of

the equivalent continuum models is evaluated are calculated values

of the free vibration natural frequencies and mode shapes. For

repetitive plate-like space lattices with pinned joints the detailed

finite element model is made with each truss member modelled using

a single axial force type truss element. Chapter II contains a

discussion of the detailed finite element modelling method, a

description of the detailed finite element model of a specific space

lattice, and a comparison of the resulting natural frequencies and

mode shapes with those obtained with an equivalent transverse shear

plate finite element. Repetitive plate-like space lattices with

rigid joints are modelled using a detailed finite element model with

each frame member modelled as a beam-columm type finite element.

..................... ..... ..........

2 , ' - -. -, ' " -. " -' - '.-, '." -" ,- . ." . . °" . ,, -" . .i . - . '. -"". " . .' , _' ,',, " ", , " " • ': . '. .. .i -.
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Chapter IV contains a description of the detailed finite element

model of a specific space lattice, and a comparison of the resulting

natural frequencies and mode shapes with those obtained with an

equivalent micropolar plate finite element. In both cases, Guyan

reduction is used to reduce the order of the eigenvalue problem.

Equivalent Modelling of Space Lattices with Pinned Joints

The equivalent plate finite element for repetitive space lattices

with pinned joints is derived using an existing equivalent continuum

representation.7 The strain energy expression derived in the

reference in terms of the in-plane, bending, and transverse shear

strains is used as a constitutive law to develop a transverse shear

type plate finite element. This element assumes a linear displacement

functions for the two inplane displacement and two transverse shear

deformation d.o.f.'s at each node, and a bicubic Hermite polynomial

displacement function for the transverse displacement. This element

allows considerable simplicity and flexibility in handling various

geometries, boundary conditions, attachments, and other structural

complexities. Chapter II contains a discussion of the existing

equivalent continuum representation, a derivation of the equivalent

plate finite element, a description of the equivalent plate finite

element model for a specific space lattice, and a comparison of the

resulting natural frequencies and mode shapes with those obtained

using a detailed finite element model. Chapter III contains a

parametric study examining the effect on the natural frequencies

and mode shapes of varying the geometric properties of the unit cell

building block of a specific repetitive space lattice.

Z. . .Z -.- . .. I. ..,.. ... .. . . . . . . . . .. ' ;. .. .



6

Equivalent Modelling of Space Lattices with Rigid Joints

An equivalent continuum representation is available for beam-like

repetitive space lattices with rigid joints. 8 This method is

extended to allow plate-like repetitive space lattices with rigid

joints to be represented by a micropolar plate continuum. The strain

energy expression derived for this continuum representation in terms

of the in-plane, bending, transverse shear, and micropolar strains

is used as a constitutive law to develop a micropolar type plate

finite element. This element assumes linear displacement functions

for the two in-plane displacement, two transverse shear deformation,

and two micropolar rotation d.o.f.'s at each node, and a bicubic

Hermite polynomial displacement function for the transverse displace-

ment. Chapter IV contains a derivation of the micropolar equivalent

continuum and micropolar type plate finite element of repetitive

" space lattices with rigid joints. Chapter IV also contains a

description of the micropolar plate finite element model for a

specific space lattice and a comparison of the resulting natural

frequencies and mode shapes for several sets of cross sectional areas

with those obtained using detailed finite element models.

It should be pointed out that by using the equivalent continuum

representations as bridges between the discrete space lattice

structures and the discrete equivalent plate finite element models,

the number and location of node points in the equivalent plate models

is determined based on the number of modes which are desired to be

accurately calculated, not by the geometry of the structure.

Specifically, there is no requirement that (or advantage to) having
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the internal nodal points of the equivalent plate finite element

models coincide with joint locations or unit cell boundaries. For

N large structures, the number of nodal d.o.f.'s used in the equivalent

plate finite element model will generally be much smaller than the

number of nodal d.o.f.'s required to represent the structure as a

detailed finite element model.

Control System Design Method

Even though the order of the eigenvalue problem describing the

repetitive plate-like space lattice structure has been reduced

significantly using Guyan reduction for the detailed finite element

models and the inherent reduction associated with using the equivalent

plate finite elements, there will still, in general, be many more

natural frequencies and mode shapes extracted than can be readily

used to evaluate control system performance. In addition, the higher

natural frequencies and mode shapes, particularly when Guyan reduction

is used are known to contain considerable error.9  Therefore, the

higher natural frequencies and mode shapes are truncated and those

retained are used as a modal model of the structure for evaluation

purposes. In order to evaluate the performance of the closed loop

system containing this modal model of the structure and a feedback

controller a cost function is defined as the integral over all time

of the weighted norm of a vector of system d.o.f.'s of interest. The

optimum structure, feedback controller combination is defined to be

that system which minimizes this quadratic cost function.10 In

general, the order of the controller to be used is much smaller

.

.'-'.'-'.'-'..'. ".'-':- •-.....-"'-..-.-..'..".....-.-......-..-.-.'-"."-"..-.........-........--.-...........",......,...-...-......-"...."....-..
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* than the order of the modal model needed to represent the dynamic

properties of the structure. Therefore, the modal evaluation model

* must be further reduced to obtain the modal model for which the

optimal control system will be designed. While this could also be

done by truncating the higher modes, an alternative method called

Modal Cost Analysis (MCA) is used instead.11  In this method the

open loop cost of each mode is used to rank the modes in terms of

their effect on system performance. Those modes which make the

largest contribution to the open loop system cost are retained. Once

the reduced order control system design modal model has been obtained

the standard Linear Quadratic Gaussian (LQG) theory10 is used to

design a feedback controller which is optimal for the reduced order

system. This system performance is then calculated using the reduced

order controller to drive the evaluation modal model. It is important

that the evaluation modal model be of substantially higher order than

the reduced order design model to determine the effect of control

system spillover on the modes which were not retained in the reduce

order model. Chapter II contains a description of the feedback

control system design and closed loop system performance evaluation

methods used. This chapter also contains a description of the

application of these methods for modal models of a specific lattice

structure generated with both a detailed finite element model and an

equivalent plate finite element model, and a comparison of the

resulting closed loop system performance costs for several different

orders of reduced order controller. Chapter III describes the

application of these control system design and evaluation methods to

7..

=el.
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a series of modal models generated using equivalent plate finite

element models with various member properties in the form of a

parametric study. The resulting system performance costs are

used to determine the best set of member properties.

..

4

.-8

- .. -... U . . . . . .

u. ..".. . . . . . . . . . . . . . . .)
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CHAPTER II - EQUIVALENT MODELLING OF

TRUSSES WITH PINNED JOINTS

Many large space structures are being designed which are made

up of a simple cell of truss bars repeated a large number of times

in two directions. Such a plate-like space lattice has been

represented as an equivalent plate continuum with transverse shear

deformation included.7 This representation is used to derive an

equivalent plate finite element. 12 As a benchmark to compare the

resulting natural frequencies and mode shapes of the structure to,

a detailed finite element model is also developed in which each

member of the truss is modelled as a simple axial force type truss

element. A specific plate-like space lattice structure is used to

demonstrate the accuracy of the simplified equivalent plate finite

element model. The eight by eight repeating cell structure chosen

is large enough to allow the continuum modelling to be acceptable.

However, most structures would have many more repetitions than this

. example. This would, of course, increase the cost and cumbersomeness

of the detailed finite element model relative to the continuum model.

This would also improve the basic assumptions inherent in the continuum

model development. The results shown that even with as few as eight

repeating cells in each direction, the control system designs based

on the simplified finite element continuum models are effective as

reduced order controllers for the detailed finite element model.
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Detailed Finite Element Model

A large finite element model of the lattice-type truss structure
13

is developed using standard axial force truss bar elements. This

model treats each member of the structure as a pinned-pinned axial

force member with a constant strain. In order to calculate the

frequencies and modes of the detailed finite element model, the

model must be reduced to a manageable order using some form of

dynamic reduction. Guyan reduction1 is used in this study to reduce

the detailed finite element model to a dynamic analysis model retain-

ing d.o.f.'s specified by the user. They are normally chosen to

adequately represent the mass distribution within the structure and

the anticipated frequencies and mode shapes.

[M]{q} + [K]{q} = 0 (11.1)

where:

{q} = vector of the d.o.f.'s of the complex model;

[M] = mass matrix of the complex model; and

[K] = stiffness matrix of the complex model.

The mass and stiffness matrices are partitioned into submatrices

associated with the d.o.f.'s to be retained and those to be removed.

M M q K ,K7
aa Mao a1 Iaa ao

[M] j {q} [K] a (11.2)
T M T '

- ao. 00 q0 ao ' 00

. o
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, %" , .

K o Ko qLaa: aol a
----- (11.3)

K 'K q0ao: oo, L031
where:

{qa} = vector of the d.o.f.'s to be retained;

{qo} = vector of the d.o.f.'s to be removed; and

IF} = force vector.

The static problem can be reduced exactly by using the lower partition

of Equation (11.3) as a constraint equation.

[K]{q} ={[Ka - [K ao[K To][Kao]T}{q} {F (11.4)a- a aa ao 00 ao a

Guyan reduction assumes that this same transformation can be applied

Vto the mass matrix.

[Mal = [Maa] - [Mao][Koo] 1Z[Kao T - [Kao][Koo- 1 [Mao T

+ [Kao][Kool [Moo][Koo]- [Kao IT  (11.5)

In general this reduction is not exact. However, it is widely used

and gives good results if a suitable set of d.o.f.'s is chosen to

be retained.

In order to perform free vibration analysis of a lattice plate

structure with all edges free, the rigid body motion of the structure,

which renders the stiffness matrix singular, must be accounted for.

In this study, the procedures used in the NASA Structural Analysis

code (NASTRAN) will be used. This procedure is given in detail in
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- "-'. the NASTRAN theoretical manual14 and is briefly described here. The

reduced dynamic system is solved for the eigenvalues and eigenvectors.

{[Ka] - X[M {qa(A) = {O} (11.6)

where:

-. = the ith eigenvalue of the reduced dynamic system;

{qai} : {qa(Ai)} : the ith eigenvector of the reduced

dynamic system; and

[Q I [q qa2 ' '' ] = the reduced dynamic system modal

matrix.

However, for the free floating or unsupported plate the stiffness

matrix is singular to order six. The first six eigenvalues are not

precisely zero due to numerical error in the eigenvalue extraction

process. Consequently, the eigenvectors calculated are not precisely

the rigid body modes. Therefore a procedure is implemented to replace

these six eigenvalues and eigenvectors with six rigid body modes.

The stiffness and mass matrices which have already been reduced

,. using Guyan reduction are further partitioned based on a set of

d.o.f.'s specified by the user as necessary to specify the rigid

body motions of the structure {qr}. The remaining d.o.f.'s are

placed in a set {qf}.

[M f T Mr { = (11.7)KM ff a KT Kf
fr rrj r fr rr_

-. . . . . .. . . . . .. . .. . . . . .. . .. . ..I*

Z .oZ
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where:

{qf} = the d.o.f.'s in the flexible set; and

{qr } = the d.o.f.'s used to define the rigid body

motion of the structure.

For a rigid body mode the equations of motion can be reduced to a

constraint equation relating the flexible d.o.f.'s to the rigid body

motion d.o.f.'s.

{[Ka] - W2[Ma]} {qal = {0} (11.8)

For rigid body modes, 0 = , thus Eq. (11.8) reduces to

[Kff]{qf} + [Kfr]{q r} 0} (II.9)

l {qf} : [D]{q r} (II.10)

where

[D] =- [Kff]-l[Kfr]; and

w = natural frequency of the mode.

By matching the kinetic energy of the structure in the rigid body

mode and using the constraint Eq. (II.10) to eliminate {qf} the

rigid body mass matrix is defined.

Mr- 5. T M f M f
]Mr:_M -MT -- h| -- {4r}T[Mr]{qr} (II.11)

_qr fr I rr_ .r

Substituting Eq. (II.10) for {qf} in (II.11) and multiplying out

Eq. (11.11) gives

.-.N
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i .{4r} T[Mr]{rl 6d {rT[D] T[Mff][D]{ r}+ {4r} T[D]T[M fr]{qr }

+ {r} TIMfrT[D]{q } + {qr }T[Mrr{qr ~I~J= r f f r rr rfrr

where the rigid body mass matrix

[Mr] = [D]T[Mff][D] + [D]T[Mfr] + [Mfr] T[D] + [Mrr] (11.12)

A set of rigid body modes is generated such that they form an orthogo-

nal, normalized set with respect to the rigid body mass matrix.

IQro ]TMr]Q [I (11.13)

The rigid body eigenvectors are calculated for the flexible d.o.f.'s

and augmented to the rigid body modes to give the rigid body mode

shapes of the entire set of d.o.f.'s.

[D][Qrol

[Qo --- (11.14)
IQ 1I
ro

The original modal matrix calculated using Eq. (11.6) is

partitioned into the approximate eigenvectors and accurate flexible

eigenvectors.

[IQ I af] [ = [[QaI[Qa (11.15)
Qa] = ar]I

The rigid body partitioned matrix [Qar] is discarded and replaced by

the more accurate rigid body mode shapes calculated using Eq.

(11.13). The resulting modal matrix is orthogonalized and normalized

to give the system modal matrix.

"j,

-, . . . :, , ,, " -' '--.-... . ,., . . . ... .. '.' " -. -. . -- -... . . • . - " " .... . . . . . .., -. ,...... ,.....,..,.... ..-.-. ,. .,-,.. . . . . . "
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IQ]T[Ma][Q] = [1] (11.16)

Equivalent Continuum Representation

The method developed in Reference 7 is used to generate strain

energy and kinetic energy expressions for the structure in terms of

strain components of the plate at the midplane. Briefly, the

displacements are assumed to vary linearly through the thickness of

the plate (Fig. 1).

u(x,y,z) = u°(x,y) + Zix(X'y)

v(x,y,z) = v°(x,y) + Zy (X,y) (11.17)

w(x,y,z) = w°(x,y) + zsO(xy)

where

(x,y,z) are the coordinates of a point within the plate;

(u,v,w) are the displacements along (x,y,z);

(cx,9y) are the rotations about the (-y,x) axes at the

midplane (z = 0);

(u,v°,w0 ) are the displacements along (x,y,z) at the

midplane; and

dw3 dw at the midplane.

The axial strain in the truss members of a typical unit cell is

expressed in terms of strain components.

k 3 3 k k kI I L ij i I.
i=1 j=1

. . .. . . .* " ~ ~ * .... . . .. . . . . . . - >* ,• .I ! i II ii "
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JOINT TRANSLATIONS:
MIDPLANE TRANSLATIONS

AND ROTATIONS

Joint v

z U (x1,y U

zi w~- 7 . 4 vh-7y x
*t. xi3. 0 y x 71

Figure 1. Plate Displacement Components

X.
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where:

k = axial strain in the k'th truss bar;

k = strain component of ck; and-i3

k
ki = direction cosines of the member.

These are then expanded using a Taylor's series in terms of the

strain components and their derivatives about some arbitrary origin

within the unit cell. The fact that the forces associated with

certain of the strain components and derivatives are zeros is used

to reduce the strain energy expression to an expression in terms of

eight strain components at the plate midplane. The truss cell geometry

used in this study is one of those analyzed in the reference.

1 T* Ucell =Z acell {e} [Weq]{ } (11.19)

where

Ucell = strain energy of a unit cell;

a cell = cross sectional area of a unit cell;

[W eqI = equivalent constitutive matrix;

o 0 0 0 0 0 0 0OT
{E9} = [E 1l 622' E12' Ki1 l K229 K121 613' c231

0 1 u v
i ( + I);

K (!x + '_ ); andKij ay " ay

1 ,Bw x
-T . + )

93 2 axi xi

-o-

.4

; " ..> " ." .. , .'. ., . ., '- , "," " "', " .... /, " ..- --" ,.- -> '" >q . . ° " -: '' j;" ,
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Equivalent Finite Element Model

The 16 d.o.f. rectangular plate element 15 is modified to include

transverse shear terms and in-plane terms yielding a 32 d.o.f.

element (Fig. 2). The interpolation functions are assumed as linear

except for the out-of-plane displacement which is assumed as a bi-cubic

Hermite polynomial.

u =a 1+ a x + a3y +a4xy

1 2

w a9 + a10x + ally + al2x + a 3xy + a 4y2  + alx+a16

+ a1 xy2 + a1 y + a19x y + a 0x y2 + a21 y (11.20)

22 a23xy a24xy

00

F-13 a 25 + 26x +27y + a28xy

C0 -a + a+a + a
£23 -29 30 a31y + 32xy

Substituting Eq. (11.20) into Eq. (11.19) gives the strain energy

expression for the element.

Ui 1 faae} TAEA { [B ]T[W q[B]{a}dydx (11.21)

where

{C [B] {a}; fa} =[al, a2  T 1.1

2~ ... 32
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NODAL DEGREES OF FREEDOM:

U; v;* W; w-x; W~Y; W~XY;e2; e,

z~w

Figure 2. The 32 Degree of Freedom Equivalent
Lattice Plate Finite Element.

. .. . . . . . . . . . . . . . . . . . ,. ..
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[B]= 0 B2  B3  B4

" - 0 0 B5-

1 0 y 0 0 0 0
[B 1]  0 0 0 0 0 0 1 x

[0  0 0.5 0.5x 0 0.5 0 0.5xj

0 0 0 -2 0 0 -6x -2y 0 0 -6xy 1

[B] = 0 0 0 0 -2 0 0 -2x -6y0

-00 0 0 -1 0 0 -2y -2y 0 -3x2

K22  0 -6y _2y 3  -6xy 3

[B1 -2x2  _-6xy -2x 3  -6x2y -6x3

L-4x -3y2  6x2y -6xy2  9x2y2

01 1 y 0 00 01

[B4] = 0 0 0 0 0 1 ; and

-00 0.5 0.5x 0 0.5 0 0.5y

" '"]'"~~~~ [5= X y Xo xO Oxy

Relating the 32 displacement function coefficients to the 32 d.o.f.'s

of the element the strain energy of the element is transformed in

terms of the element d.o.f.'s.

' " %
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'I-t.. .

Uel 2acell {g}T IAREA [T]T[BT [eq B [ T dy dx g }  (11.22)

where:

{a} = [T]{g}

T T T T T
(g} = [{gil {92} 1 {93} , {g4} I and AREA is the area

of the rectangular plate finite element.

This defines the stiffness matrix of the element.

1 ( [T]T[B]T[Weq[B][Tjdydx
[Kel] -a c AREAf eq (11.23),-:-'"'"'-., cell1 A E

The kinetic energy expression derived in Ref. 7 is used to generate the

lumped mass matrix of the element.

u m0  0 0 m1  0

v 0 m 0 0 m

K.E. = acell w 0 0 m0  0 0 (11.24)

; i 0 0 m2  0 x
y 0 m1  0 0 m2  y

where mo, mi1, and m2 are equivalent lumped masses of the space truss

defined in the reference.

M1  0 0 0

o M2 0 0
[Me = (11.25)e ll o o M 3  0

e-.0 0 0

o o
.5't
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where
"M.] _ AREA ..

a 0 0

1 0 m SYMMETRY

0 0 m0

m1 0 0 m2o o
m 0 0 m2

0 0 0 0 0 0

0 0 0 0 0 0 0

Control System Design Method

The detailed finite element model is reduced to an evaluation

modal model which can be readily analyzed to determine the effectiveness

of the various control designs. The modes retained in the evaluation

model are arbitrarily selected to be the lowest frequency modes of

the complex model that are both controllable and observable. The

evaluation model is used in the real modal form.15

Wi 0 -W1 0 o...0- -BI  D I

2 0 W2  0 .0 B2  D2

Q3 3  0u +

Q0 0 Wn Qn B D

Q, QI

-Q.IQ

q•n Qn

(11.26)

- - - -... . . . .. . .. . .

!a1%1A. :K'* '-
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where

{u} is the input force vector to the system;

{w} is the input disturbance vector to the system;

{v} is the measurement disturbance vector of the system;

{z} is the measurement vector of the system;

{y} is the output vector of the system;

{Qi }  I with qi : the modal coordinate associated with

mode i;

[Bi] = T with {bi}T = the modal coefficients of the

applied force for mode i;

[Di] ' with {dilT = the modal coefficient of the

applied disturbance vector for mode i;

[Ci] = [ci 0] with {ci} = the modal coefficients of the

output vector for mode i;

[Mi] = [mi 0] with {mi} = the modal coefficients of the

" measurement vector for mode i;

[Wi] r with w. the natural frequency of the2l
" i " 2 4 iL -. ]mode i; and

= the modal damping coefficient.

The full models available from either the complex model or the

equivalent plate finite element models usually generate too many

a.
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modes to be used directly as control design models. Therefore, some

means of model reduction is required. Several dynamic reduction

schemes have been developed to al'ow the control problem to influence

the model reduction; of these Modal Cost Analysis (MCA) is the

most straightforward to use.17 In order to use MCA, the relative

importance of a set of outputs, each of which is a linear combination

of d.o.f.'s of the structure is used to build a positive definite

output weighting matrix [Q]. The cost which is to be minimized by

the control system is then defined as the sum of a weighted norm of

the output vector plus a weighted norm of the measurement vector.

V = V + PVz  (11.27)
y

where

V = lim E jo{ylT[Q]{y}dt
y T, 0

Vz =lim E f{z}T[Z] 'l{z}dt;
E = expected value; and

p = measurement weight.

The weighting matrix used for measurements is the inverse of the

covariance matrix of the measurement errors.

[Z] E[{v}{v}T] (11.28)
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For small values of modal damping this can be reduced to an uncoupled

set of equations as derived in Ref. 17.

V= ({ci}T[Q]{ci} + {mi}T[z]-l{mi})({b}T{b}) (11.29)1

Control design models of order n are derived from the detailed

finite element and the equivalent plate model by retaining the n/2

modes having the largest modal costs. Since rigid body modes have

infinite modal cost, they must always be retained in the reduced models

if they are controllable and observable.

Each control design model is used to design a standard LQG

controller.
10

{q} [A]{q} + [B]{u} + [D]{w}

{y} [C]{q}

{z} : [M]{q} + v (11.30)

where

E{w} : E{v} : 0;

E[{w(T)}{w(t)}T] :

TE[{v(r)}{v(t)} [V]6(t-T);

E[{w(t)}{q(O)}T ] : E[{v(t)}{q(O)}T] 0; and

T
E[{v(t)}{w(t)} T] : 0

d
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Starting with a reduced system in the form of Eq. (11.26) a state

estimator is designed to allow a feedback controller to be designed.

{q} = [A]{q} + [B]{u} + [F][{z} - [M]{q}] (11.31)

Where the filter matrix is defined as a Riccati equation.

[F] = [P][M]T[V]
-1

[0] = [P][A]T + [A][P] - [P][M]T[v]I[M][P] + [D][W][D]
T

(11.32)

Once the estimate of the state is available a state feedback controller

*q is designed.

{u} = [G]{q} (11.33)

Where the feedback gain matrix [G] is defined as a Riccati equation.

[G] - I [R]-1[3]T[K]
p

[0] : I[K][ [A [K] - - [K][B][R- I[B]T[K] + [C] T[Q][C]
p (11.34)

Closed Loop System Performance

The full order controller based on the evaluation model can be

evaluated directly, as in Ref. 10.

V = V + pVu

Vy= lim 1 {y}T[Q]{y}dt : tr[C]T[Q][C] [[x] + [P]] (11.35)Y T 0T~

U
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Vu T-*m I {u} T[R]{uldt tr[G]T[R][G][X]
0-MTJ

where

[0] [X]I[A] + [B][G]})T +{[A] + [B][G]}[x] + [F]EV)[F] T

(11.36)

In order to evaluate the full evaluation model driven by a reduced

order controller, the evaluation model must be augmented with the

controller model as in Ref. 16.

For the evaluation model,

f4 EA ]{q I+ [B ]{u) + [D ]1w}

{z} [M ]{q~ + {v} (11.37)

* For the controller model,

{q} [AC ]{q} + EFR]{z}

{u} [ GR]~ (11.38)

where

[Ac]= [R] + [BR][GR) [FR][MR]

This forms an augmented system.

qe Ae BeGR e 0eo

[ FRMe Ac] 0 L FR]
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S= {qa}:[Aa{qa} + [Dq]{Wa} (11.39)

jyj :R] qe [C a]{qa} [Wan w 0

from which

Vy : tr[C ejT[Q][C e[xe]; and

Vu = tr[GR]T[R][GR][XR]

where

[Xa ] = L and
c X

S[0] = [Xa][Aa]T + [ X [Da)[Wa[Da]T

Results

Detailed Finite Element Model

A unit cell of the lattice-type space structure to be analyzed in

this study is shown in Fig. 3. The dimensions of the unit cell are

those from Ref. 7. It is 15 meters square by 7.5 meters deep.

Structural members on the upper surface have an area of 80 mm2. The

bottom surface members have an area of 50 mm2 .  Elements connecting

the two surfaces have an area of 10 mm2 . The material has a Young's

9 2 3Modulus of 71.7x109 Nt/m 2 and a density of 2768 kg/m . The structure

to be analyzed consists of identical cells repeated eight times in

.................... .......................................
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ORIGINAL
VALUES

UPPER SURFACE MEMBERS A 1=B0,m
LOWER SURFACE MEMBERS A2-50 mm?-

- -VERTICAL MEMBERS Av=1 0mm2

2

----- DIAGONAL MEMBERS Adz 10mm
L= h=7.5m

Figure 3. Plate-like Space Lattice Unit Cell
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each of two directions (Fig. 4). The resulting structure resembles a

plate. The detailed finite element model is made using a pinned truss

element for each member. This model is analyzed using NASTRAN. The

full model has 1254 d.o.f.'s. The reduced dynamic analysis model has

214 d.o.f.'s as shown in Fig. 5. This structure was chosen to be

large enough to allow an equivalent continuum model to be accurate

over a significant frequency range, but small enough to be readily

analyzed.

Equivalent Plate Models

The truss properties of the unit cell shown in Fig. 3 are used to

generate the strain energy and kinetic energy of the structure in

terms of the strain components at an arbitrary point within the cell.

The matrices [Weq] and [M eq] in the strain energy expression Eq. (11.21)

and kinetic energy expression Eq. (11.24), respectively, are tabulated

below and are in agreement with those presented in Ref. 7.

Constitutive Matrix

1.6822 0.4394 0.0 1.4557 3.8025 0.0 0.0 0.0

1.6822 0.0 3.8025 1.4557 0.0 0.0 10.0

1.7576 0.0 0.0 15.214 0.0 0.0

23.6559 6.179 0.0 0.0 0.0.- ' [We ] ..
-eq = 23.6559 0.0 0.0 0.0

F:106 nt-inm____ __

SYMMETRY 24.716 0.0 0.0

0 .3880.0

0.388 (11.39)

,

4'
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Figure 4. Plate-like Space Lattice
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Figure 5. Detailed Finite Element Model
Dynamic Analysis Set.
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Mass Density Matrix

0.17794 0.0 0.0 0.14176m. 0.0

0.17794 0.0 0.0 0.14176m

[M] = 0.17794 0.0 0.0

kg/SYMMETRY 2.3698m2  0.0

2.3698m2  (11.40)

These expressions are used to derive an equivalent plate finite

element. This element is used to form two equivalent plate models,

a coarse one (4x4) containing 16 uniform elements, and a more detailed

one (8x8) containing 64 uniform elements.

Free Vibration Analysis

Each of the three finite element models, a complex model (1254

bar elements) and two equivalent plate models (4x4 and 8x8 meshes),

was analyzed to determine the natural frequencies and mode shapes of

the structure. The lower natural frequencies and the associated mode

shapes predicted by the three models are shown in Fig. 6. The mode

shapes predicted by all the models are very similar. Contour plots

of several of the elastic modes generated for the structure

contained in Appendix A. The three sets of frequencies are in good

agreement, especially at low frequencies. The relative costs to

execute each vibration analysis are given in Table 1. Even with as

few as eight cell repetitions in each direction the cost savings using

the equivalent plate finite element model are substantial.

'%

: ...- :. . . ... . . . . . . . . . . . . . . . .. . .. .. .. .. . .. . . . . -- . . . . . . . . . . . . . . . .
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10.0- 0 COMPLEX MODEL (1254 DOF'S)

9.0- A 8x8 ELEMENTS (512 DOF'S) o0000

8.0 0 4x4 ELEMENTS (128 DOF'S) 66A

7.0 OQA O6

-6.0 0 0
SNODAL LINE PATTERNS

~5.0-

00
LDJ3.0O

40 9[H 14E 19E324M

0.0D
0 - 5 10 15 20 25

ELASTIC MODE NUMBER

Figure 6. Elastic Modes of the Space

Lattice Structure.
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-A. Table 1. Relative Vibration Analysis Costs

Model Relative Cost

Complex 1.0000

4x4 elements 0.0350

8x8 elements 0.1000

Control Problem

The control problem used to evaluate the capability of the

equivalent continuum models involves angular sensors and actuators

located at the center and the four corners of the structure. This is

17similar to a case examined for an isotropic plate. It is assumed

that the output is measured and the disturbance is acting on these ten

rotational d.o.f.'s at the five locations. Therefore, the [B], [D],

[C]T, and [M]T matrices are identical. The output and control

weighting matrices are assumed to be identity matrices. The disturbance

weighting matrix [W] is assumed to be 0.0001 times the identity matrix.

The measurement weight matrix [V] is assumed to be 10-12 times the

identity matrix. The modal damping is assumed to be 0.005.

Evaluation Model

A system containing 24 modes was used to design a control system

using LQG theory. The evaluation model was chosen to include the

two rigid body modes that are both observable and controllable.

The frequencies and modal coefficients are given in Table 2.

P.6.....-.-.-....... . .... ii.........
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Table 2. Evaluation Model Rotational Coefficients

Natural Rotation about the y-axis (9 ) Rotation about the x-axis (0)

Freq Corner Cone Cone Comer Cone Cone Cone Comel
*(Hz) 1 2 3 4 Centew 1 2 - 3 4 Center

0.00 -3.76 -3.76 -3.76 -3.76 -3.76 -3.76 -3.76 -3.76 -3.76 -3.76
0.00 -3.55 -3.55 -3.55 -3.55 -3.55 3.55 3.55 3.55 3.55 3.55
1.16 5.88 5.88 -5.88 -5.88 0.00 5.88 -5.88 -5.88 5.88 0.00
1.99 6.98 -6.98 -7.04 6.99 0.00 -6.98 -6.98 7.03 6.98 0.00
2.26 6.49 -6.50 -6.67 6.53 0.00 6.51 6.54 -6.39 -6.53 0.00
2.76 -11.72 9.35 11.97 9.29 1.45 -7.57 2.75 -7.21 2.75 2.95
2.76 2.75 -7.57 2.75 -7.57 2.95 -9.35 11.71 -9.35 11.71 -1.45
4.14 7.92 -8.50 -9.01 7.67 0.00 8.19 8.16 -7.71 -8.21 0.00
4.23 10.75 10.17 10.79 11.08 -2.87 .43 .80 -.74 .16 -.06
4.23 .47 .12 .47 .12 -2.87 -10.61 10.60 -10.61 -10.60 2.88
4.67 -9.54 -9.63 9.81 9.49 0.00 8.82 -8.68 -9.40 8.68 0.00
4.79 -10.30 10.39 10.67 10.29 0.00 -10.92 11.06 10.30 -11.06 0.00
5.84 12.75 9.94 13.47 9.43 3.27 8.32 -1.90 7.04 .59 .94
5.85 2.02 -8.29 2.02 -8.29 -.90 9.88 12.74 9.88 12.74 3.26
6.30 -6.47 6.03 7.00 -7.02 0.00 5.81 6.19 -7.25 -5.92 0.00
6.42 -5.78 5.58 6.25 -6.19 0.00 -6.44 -6.19 5.65 6.39 0.00
6.76 -11.80 12.83 12.53 12.38 .72 2.57 -4.29 4.05 -4.22 -2.61
6.78 -4.26 2.29 -4.26 2.29 0.00 -12.51 11.99 12.51 11.99 0.00
7.31 -10.13 -9.36 10.04 9.75 0.00 -9.76 9.56 8.97 -9.72 0.00
7.62 -12.01 12.32 12.20 -11.91 0.00 -10.46 10.96 9.30 10.78 0.00
7.68 4.03 -4.35 -4.33 3.86 -.05 -7.23 -6.68 8.65 6.90 .08
8.38 6.67 7.37 7.21 8.43 4.20 -.81 -4.70 -3.07 -4.24 -1.71
8.40 -4.51 -1.13 -4.51 -1.13 -1.64 -7.93 -6.62 -7.93 -6.62 -4.23
S.81 4.81 9.41 -9.20 -4.69 .22 -7.12 3.80 7.19 -7.50 .75

Modal Cost Analysis

The modal costs are calculated for each of the three analysis

models and plotted versus frequency in Fig. 7. The 8x8 element model

and the complex model have very similar modal cost distributions.

*,,,, Not surprisingly, the 4x4 element does not predict the modal costs

as closely. The frequencies and modal coefficients for the two

finite element modal models are given in Tables 3 and 4 for the

4x4 and 8x8 meshes, respectively.

.. . . ... 
. . . . .. . .
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Figure 7. Modal Costs of the Example Lattice Structure

,.°

,'

4'

'"'"""~~~~ ~ ~~~~~~~.. "-.-."..".. .... ".......... "+... .... " "" " + .. ..
_ ,' ,. , . ... 2... +.. . , .. ,. ,:nl' - u- ,, . ..



39

Table 3. 4x4 Equivalent Plate Model
Rotational Coefficients

Natural Rotation about the y-axis (Ox) Rotation about the x-axls (ey)
Frpq. Corned CornerlCorner Corner et nerlC anerC ornerCorneer
(Hz) Il ]j j Centerj 2 2 3 4 Center

0.00 -5.35 -5.35 -5.35 -5.35 -5.35 -.49 -.49 -.49 -.49 -.49
0.00 .49 .49 .49 .49 .49 -5.35 -5.35 -5.35 -5.35 -5.35
1.12 -5.71 -5.71 5.71 5.71 0.00 -5.71 5.71 5.71 -5.71 0.00
1.80 6.66 -6.66 -6.66 6.66 0.00 -6.66 -6.66 6.66 6.66 0.00
2.06 -7.53 7.53 7.53 -7.53 0.00 -7.53 -7.53 7.53 7.53 0.00
2.40 10.28 -12.08 10.28 12.08 .76 -1.70 6.57 -1.70 6.57 -2.06
2.40 -6.57 1.70 -6.57 1.70 2.06 -12.08 10.28 12.08 10.28 .76
3.34 -6.70 6.70 6.70 -6.70 0.00 -6.70 -6.70 6.70 6.70 0.00
3.56 12.02 12.50 12.02 12.51 -2.14 -2.92 -4.53 -2.92 -4.53 .65
3.56 4.53 2.92 4.53 2.92 -.65 12.50 12.02 12.51 12.02 -2.14
3.67 -9.98 -9.98 9.98 9.98 0.00 9.98 -9.98 -9.98 9.98 0.00
3.80 -9.87 -9.87 9.87 9.87 10.00 -9.87 9.87 9.87 -9.87 0.00

Table 4. 8xS Equivalent Plate Model
Rotational Coefficients

Natural Rotation about the y-axis (Ox) Rotation about the x-axis (8y)
Freq. -Cornr-Torner -&rn;-,--I --T Co-rn-eiq-C6rnir onerI orne]
(Hz) I1 2 3 4 Centrl 1 2 3 4 Cente

0.00 5.55 5.55 5.55 5.55 5.55 .26 .26 .26 .26 .26
0.00 .25 .25 .25 .25 .25 -5.58 -5.58 -5.58 -5.58 -5.58
1.17 5.80 5.80 -5.80 -5.80 0.00 5.80 -5.80 -5.80 5.80 0.00
2.00 -6.88 6.88 6.88 -6.88 0.00 6.88 6.88 -6.88 -6.88 0.00
2.27 -7.02 7.02 7.02 -7.02 0.00 -7.02 -7.02 7.02 7.02 0.00
2.68 8.36 -4.50 8.36 -4.50 -2.50 11.17 -8.66 11.17 -8.66 -1.62
2.68 8.66 -11.17 8.66 -1.62 0.00 -4.50 8.36 -4.50 8.36 -2.50
3.93 -7.60 7.60 7.60 -7.60 0.00 -7.60 -7.60 7.60 7.60 0.00
4.11 13.10 13.10 13.10 13.10 -2.26 .86 .77 .86 .77 -.14.
4.11 -.77 -.86 -.77 -.86 .14 13.10 13.10 -13.10 13.10 -2.26
4.31 11.39 11.39 -11.39 -11.39 0.00 -11.39 11.39 11.39 -11.39 0.00
4.60 11.87 -11.87 11.87 11.87 0.00 -11.87 11.87 11.87 -11.87 0.00
5.41 11.73 -10.26 -11.73 -10.26 -1.03 -6.21 -2.48 -6.21 -2.48 -.41
5.41 -2.48 -6.21 -2.48 -6.21 -.41 10.26 11.73 10.26 11.73 1.03
5.99 11.23 -11.23 -11.23 11.23 0.00 -11.23 -11.23 11.23 11.23 0.00
6.14 -9.50 9.50 9.50 -9.50 0.00 -9.50 -9.50 9.50 9.50 0.00
6.29 2.79 -2.06 2.79 -2.07 -2.24 -19.02 18.93 -19.02 18.93 .29
6.29 18.93 -19.02 18.93 -19.02 .29 2.07 -2.79 2.07 -2.79 2.24
6.68 6.65 6.65 -6.65 -6.65 0.00 6.65 -6.65 -6.65 6.65 O.NO
6.98 -9.16 9.16 9.16 -9.16 0.00 9.16 9.16 -9.16 -9.16 0.00
7.13 -10.41 10.41 10.41 -10.41 0.00 -10.41 -10.41 10.41 10.41 0.00
7.92 16.27 16.37 16.27 16.37 5.32 -.97 19.86 -.97 1.99 .17
7.92 -1.99 .97 -1.99 .97 -.17 16.37 16.27 16.37 16.27 5.32
8.05 16.57 "16.57 16.57 16.57 0.00 16.57 -16.57 "16.57 16.57 0.00

I"
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Control Design Models

The reduced models chosen contain the two observable and control-

lable rigid body modes plus up to ten elastic modes. The elastic

modes retained are those with the largest modal costs. The performance

of several reduced order controllers is shown in Fig. 8.

Concl usions

A basic procedure to analyze plate-like space lattice structures

using finite element models of equivalent continuum formulations of

the strain energy and kinetic energy of the structure has been

developed and implemeneted. By retaining the transverse shear
VW

deformations in the finite element formulation, the equivalent plate

finite element models are found to give modal results consistent with

those generated from a detailed truss bar element model of the space

lattice structure even for small numbers of unit cell repetitions.

The modal models resulting from the finite element model are

shown to serve as accurately, yet are more simplified in the control

design process compared to the complex truss bar element model for

the space-lattice structure. This study has shown that choosing

control design models based on modal sequence may involve unnecessary

modes. By using Modal Cost Analysis to consider the control problem

based on a sequence of lower modes, it is found that several

intermediate modes do not contribute much to the control design.

..-w . .
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6.0 (ALL CURVES)

~4.ODYNAMIC ANALYSIS METHOD
o COMPLEX MODEL
a 8 x 8 ELEMENTS
o 4 x 4 ELEMENTS

7" CONTROL SYSTEM -
F-"
' DESIGN MODEL
0 \". ""
0-, u -- 12 MODES -. . .
z 1.0 -- 8 MODES 0.n < "

....... 4 MODES ..-

;-.J
(D
U 0.5-

10-5 10-4 10-3 10-2 10-1 100 101 102 I03 104 105

CONTROL ENERGY Vu (nt2 -m 2 )

Figure 8. System Performance of the
Example Lattice Structure.
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CHAPTER III - EQUIVALENT MODELLING

AS A DESIGN TOOL - PARAMETRIC STUDY

Lattice plate finite elements based on a continuum model of a

large plate-like lattice space structure are used to examine the

effect of variation of several fundamental structural parameters on

18the natural frequencies and mode shapes of the structure. Reduced

order controller design models are developed using modal cost analysis

to rank the modes for each set of structural parameter values. The

linear quadratic Gaussian (LQG) controller design method is used to

t develop feedback control systems for each set of structural parameter

values. The resulting system performance is then evaluated by examining

the steady state regulation cost of the structure as a function of the

structural design parameters.

Problem Statement

The initial space lattice geometry used in this study was used

in Chapter II to demonstrate the effectiveness of equivalent finite

element models in designing feedback control systems for plate-like

lattice space structures. A simple unit cell (Fig. 9) is repeated

eight times in two orthogonal directions to generate the lattice

space structure. The lattice space structure geometry is defined by

six parameters. Four of these are the cross sectional areas of:

~ <~.the upper surface members (A1), the lower surface members (A2)1 the

IN,
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I I

ORIGINAL
VALUES

UPPER SURFACE MEMBERS A =80mm2

LOWER SURFACE MEMBERS A2 =5Omm2

VERTICAL MEMBERS Av=l Omm2
2

SDIAGONAL MEMBERS Ad= Imm
L= h =75m

Figure 9. Space Lattice Structure Unit Cell.
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vertical members connecting the two surfaces (Av), and the diagonal

members connecting the two surfaces (Ad). The remaining two parameters

are the thickness or height (h) and half-width (L) of the unit cell.

. For simplicity, it is assumed in this study that all members are of

circular hollow cross sections with outer diameter (do) and inner

diameter (di). The ratio between the two diameters (d /di) is defined101

as a. The plate-like lattice structure is assumed to be free along

all four edges. The control system configuration, shown as a midplane

in Fig. 10, consists of a set of four pairs of torque actuators (A)

- - about the x and y axes respectively located along the diagonals of

the plate-like structure at a distance of 21.3 meters from each

corner. The eight actuators are driven by a feedback control system

using eight sensors (M) measuring the angular motion of the structure.

These angular sensors are located in pairs at the four corners of the

structure. Five pairs of disturbances (D) are used: four pairs are

at the same location as the actuators and one pair is at a distance

of 21.3 meters from the center of the structure along a diagonal.

Cross Sectional Area Variation

The first parametric variation performed in this study is

optimizing the cross sectional areas (A1, A2, Av and Ad) for fixed

lengths (L and h). Examining the strain energy terms calculated for

the equivalent continuum formulation (see Table 2 of Ref. 7), it is

apparent that the bending stiffnesses depend on the sum of A1 and A2

and the transverse shear stiffness depends on Ad. The natural

frequencies and mode shapes for small amplitude transverse vibration

of the lattice are virtually independent of the in-plane stiffness

.::...
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.. \. which depends on the difference between A1 and A (see Table 2 of
1 2:

Ref. 7). Therefore, the natural frequencies and mode shapes for

transverse vibration of the lattice are independent of the relative

magnitude of A1 and A2 . For simplicity of this study, the cross

sectional areas (As) of all the members in the upper and lower

surfaces is assumed to be the same.

As = A1 = A2  (11.1)

The cross sectional area A is held constant at its original value.
v

The total mass of the structure, which is held constant, is given by:

2pAREA 1 lh d
M- L [(1 + (AI+A 2) + A + Ad]  (111.2)

where p is the mass density of the structural members and d = h2+L 2 .

Substituting the assumed parameter values into Eq. (111.2) yields

the following relation between As and Ad.

As = (69.167 - 4.167x10 5Ad) x 10- 6m2  (111.3)

The members of the lattice structure are extremely slender.
Before examining the effect of varying As and Ad on the natural

frequencies, mode shapes, and performance, their effect on the Euler

buckling load capacity of each member of the lattice is examined and

shown in Fig. 11. Since A2 is related to Ad by Eq. (111.3), only

Ad is used in presenting results. The buckling load of each tubular

member is nondimensionalized by dividing its value by the buckling

load of the initial lower surface members

-- , .. ..-.. ... .. ...... ,.-. . .. ........... .-.. ... •. ....-... .. °.',.. .. . .°.-...,'. , -..... ,
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IEI"Z Po L (111 4)

where

E = 71.7x10;

w(a4-1)d4
I b4 and

do = adi

Figure 12 shows that as Ad is varied to either extreme, Ad or the

inversely related As will become very small causing the members to

have unacceptably low values of the Euler buckling load. For

reference, the Euler buckling loads of the surface and diagonal

members in the initial configuration are shown in Fig. 11 as dashed

lines. Figure 12 shows the effect of the cross section area Ad

(and the inversely related AS) on the natural frequencies of various

modes. It is noted that modes 4,5 and modes 7,8 are double modes.

It is interesting to note that all of the present natural frequencies

for the ten lowest modes approach maxima when Ad is between 30 and

50 mm2. Apparently, the trends of these curves result from the

compensating effects of three factors: the bending stiffness, the

transverse shear stiffness, and the rotatory inertia. When Ad

decreases (or As increases) both the bending stiffness and the

rotatory inertia increase, whereas the transverse shear stiffness

decreases. Figure 13 shows the effect of Ad on the modal cost for

each mode. As the Ad value decreases, the modal cost of the first

mode becomes increasingly dominant, whereas the modal cost curves for
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several other modes cross each other. Such crossings indicate that

different modes are retained at different Ad values in the reduced

order feedback control system design models.

For each set of parameter values, a series of reduced order

controllers are designed using the LQG method. The system performance

is evaluated using the full evalation model driven by the reduced

order controller. A typical performance curve (Fig. 14) relating

regulation cost (V y) to control energy (Vu) is generated by varying

p in Eq. (11.27). The performance curves for all of the cases studied

are very similar and are contained in Appendix B. Figure 15 shows

the regulation cost (V y) versus Ad for various constant values of

(solid curves) and for the minimum Vy (circled points). These

results are for a controller designed retaining two rigid body

modes and three elastic modes in the reduced order controller design

model. The results for other reduced order controllers were similar

and are also in Appendix B. The minimum regulation cost is obtained

for Ad values between 10 and 30 mm2. It is interesting to see that

designs near the Ad value of the original configuration perform

better than designs near the peak frequency.

Thickness or Height Variation

As a second parametric study, the effect of varying the depth

of the structure (h) is examined. The variation is performed such

that the buckling load in the slender truss members connecting the

surfaces and the total mass of the structure is held constant.

For tubular members with a constant ratio of outer and inner

diameters, the moment of inertia (I) is proportional to the cross

..
•
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sectional area (Av) Thus the Euler buckling load in the vertical

members is held constant by maintaining a constant ratio between

the cross sectional area (Av ) and the height (h). For simplicity,

the cross sectional area Ad is assumed equal to AV '

Av (1.33x10-6m)

A= - h (d 7.5)

Substituting the assumed parameter values into the mass Eq. (111.2)

yields the relation between As and h.

-6 h' v l+ (h')
As  141.2xi0 6 -2+ (111.6)

where

h' = h/7.5m.

As h increases, the nondimensionalized Euler buckling load in the

surface members (Fig. 16) decreases, eventually indicating that

these members are too slender. The natural frequencies of the

first ten elastic modes of the structure are shown in Fig. 17.

Note that the maximum frequency of the present ten modes occurs

at thicknesses near 22.5 meters. The trend in these curves is caused

by the compensating effects of A and h on the bending stiffness,

transverse shear stiffness, and rotatory inertia. As h increases,

As increases Eq. (111.6). Therefore, the increase in stiffness

due to increasing h is offset by the reduction in stiffness due to

decreasing As

..
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The modal cost as a function of thickness (h) for the various

modes is shown in Fig. 18. Since the modal cost curves show some

crossings, different elastic modes will be retained in the reduced

order models for different ranges of thickness (h). Figure 19 shows

the regulation cost (V y) versus thickness for various constant

values of p (solid curves) and for the minimum Vy value obtainable

(circled points). The reduced order controllers for thicknesses

less than 15.0 meters at p = 1.0x10-15 were unstable. The performance

results are for LQG controllers based on two rigid body modes and

three elastic modes. Similar results were obtained for reduced

order controllers of other orders (see Appendix B). It is

interesting to point out that for this example the optimal performance

always occurs when the thickness (h) is near 7.5 meters, whereas a

local maxima occurs when h is near 15 meters.

A procedure has been demonstrated to utilize equivalent continuum

finite element modelling methods to efficiently examine the effects

of parametric variation of the cross sections of plate-like space

lattice structures. Using a specific space lattice structural

configuration, two sets of parameter variations were performed. In

the first case, the length of all the members as well as the mass

of the structure were held constant. This caused the area of the

surface members to be a function of the area of the internal diagonal

members. The second case involved the variation in the thickness

of the space lattice structure. Again, the length and total mass

of the structure were held constant. The allowable buckling load

of the slender internal members was also held constant. Thus the

11 ' - - '1" ..- -. '. . . -... . . - - . ". . '- .- ., , ' . . ..-" " - - . . . " . ''" ''' .
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cross sectional area of the surface and internal members was

determined to be a function of the thickness. For both cases,

maxima were obtained in the natural frequencies and optimal

performance values of the design parameter were calculated.

Modelling the structure using the finite element continuum model

is seen to allow more flexibility in treating geometry, boundary

conditions, attachments, and other structural complexities.

y.

.4

.. .. ,..
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.-. 9.

CHAPTER IV - EQUIVALENT MODELLING OF

FRAME STUCTURES WITH RIGID JOINTS

In this chapter a micropolar plate continuum model of plate-like
.9

space lattices whose frame members are connected with rigid joints

is derived. The resulting continuum model is used to derive an

equivalent plate finite element including micropolar rotations and

transverse shear deformations as nodal d.o.f.'s in addition to

displacements and displacement derivatives.19

A hexahedral space lattice structure with rigidly connected

frame members is used as a demonstration problem. Several sets of

frame member cross sectional properties are used. The exemplary

plate-like space lattice structure is assumed as rectangular in shape

with rigid joints and with four repeating cells along each edge. The

natural frequencies and mode shapes of this structure with all edges

free are calculated with and without the micropolar strains and

rotations using the micropolar plate finite element. The natural

frequencies and mode shapes are also calculated using a detailed

finite element model (with every structural member modelled by a

beam-column element) of the plate-like space lattice structure. The

natural frequencies and mode shapes obtained using the micropolar

theory are shown to be in good agreement with those obtained using

the detailed finite element modelling, for the present example. The

.9-'2

9%,
"- ,%
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natural frequencies and mode shapes calculated neglecting the micro-

polar terms are found to differ substantially from those obtained

by the detailed finite element model. A static analysis is also

performed for a rectangular plate-like space lattice structure with

rigid joints and with eight repeating cells along each edge. The

plate structure is simply supported at four corners and loaded at

the center by a transverse concentrated load. The static deflections

of the structure are calculated using the same three types of

modellings. Again, the static deflections obtained using the micro-

polar plate finite element model are in good agreement with those

from the detailed finite element model, while neglecting the micropolar

terms causes substantial discrepancies.

Equivalent Continuum Representation

The repetitive nature of many large space lattice structures

allows them to be modelled as an equivalent continuum. The smallest

fundamental building block of such a structure is called a unit cell.

The strain energy expression of the unit cell is obtained using a

finite element model with each frame member modelled with a one

dimensional beam-column element containing both axial and flexural

rigidity.

Ucell = 2 {q}T [Kcel]{q1 (IV.1)

where

Ucell is the strain energy of the unit cell;
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.%'

1q) T = ({ql}T, {q2}T, ... { T{qi} T  (ui1 vi  2 wi  , , z)

{q} T = (u., v1, W, Bxi yi

(ui, vi, wi) are the translations in the (x,y,z) directions

at node i;

x i z) are the rotations about the (x,y,z) axes

at node i;

[Kcell] is the stiffness matrix of the unit cell; and

n is the number of joints in the unit cell.

In this study, the stiffness matrix was computed using the NASA

Structural Analysis (NASTRAN) code, with each frame member modelled
as a CBAR type element. 14

The derivation which follows is equally valid for unit cells
.4.

containing other structural elements such as plates and membranes.

The translation and micro-rotations in the unit cell are assumed to

vary linearly through the thickness (h) of the plate-like structure.

The orientations of the various translations and rotations are

expanded as a first order Taylor's series in the z direction yielding

ten displacement components at the midplane (see Fig. 20).

u = u(xi, yi) + zi Ox (X, Yi)

v. = v(x., Y.) + zi y (Xi, yi)
i 

1 1 
i ,
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-"wi = w(x yi) + i Ez(X'

yi = e(Xi, yi) + zi i1xz(xi, y (IV.2)

axi = ey (Xi yi) + zi yz(Xi, Yi)

where (u,v,w) are the translations in the (x,y,z) directions;

(Ox, 0y) are the rotations about the (-y, x) axes; (e x , e y) are the

microrotations about the (-y,x) axes; cz =d- ; 1 x do /dz; anddz x

1yz = de/dz all at the midplane of the plate continuum. The

rotation (Bz ) about the axis normal to the plate is ignored. It is

noted that the positive sign convention of each rotation is based on

the right hand rule. Each of these ten displacement components at

the plate midplane is expanded as a second order Taylor's series in

x and y about the center of the unit cell. For example, three are

shown below.

u(x,y)=a1 + xa + xa+ 2  a + a a +X- a
1 x2 y2 6

v(x,y) = a + xa + ya9 +-L- a 2 a + 2 a12 (IV.3)

X2 2
yz(x'y) - a55 + xa + Ya + a + M a + 2 ayz 55 56  57+T 58  2 59 2 60

Using Eq. (IV.2) and Eq. (IV.3) the nodal displacement vector {q} can

be expressed in terms of the displacement Taylor's series coefficient

vector {a}.

{q} = [T {a} (IV.4)
6nxl 60x1

IA
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.:- where

[T] = T2  [Ti] = [[S] zi[S]]

T1 n

s 0 0 0 0

0 s. 0 0 0

0 0 s 0 0
[S]= i (IV.5a)

0 0 0 0 s

0 0 0 -si  0

0 0 0 0 0

where

xi2 xiYi Y2
[si] = [1 xi Yi -2 - 2 2

Substituting Eq. (IV.4) into Eq. (IV.l) yields the strain energy

expression of the unit cell in terms of the displacement Taylor's

series coefficient vector.

Ucell =1 {aT Ta (IV.5b)

ceTl [cel 1][T]{a}

The fundamental assumption of micropolar continuum theory is

that the local rotation at a point (microrotation) is independent of
20

the translations. The strain components of the micropolar continuum

are defined in terms of the ten midplane displacement components.

. ."
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classical plate strains:

dudv du dv. C~~xx =d- d] ; y - ; 2xy=] + ;

K 4 Ky -y 2K dx +d'
xx dx yy dy xy dy dx

. transverse shear strains:

_dw+ x;d w2 dx 2e L" + y (IV.6)

micropolar strains:

r 1 (dw ry 1 (dw
rx = (x- x) - Ox; ry= (d-4)- y;

do do dex  de

These strains are expanded in a strain Taylor's series in x and y about

the center of the unit cell.

C 0O + C0 X + E:0o

exx x x,x xy y

O 0 0
Cy EY Cy~ y + Cy~ y

Ey y xy Yx,y
C4 xy Cxy CXI xy x xy,y

K",=K0 +K O +; xx xy Kxy,x x Kxyyy

o 0 0
K =K +K X + 0 y
yy yy yy,x yy,y

°-
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Kx 0  0K 0 i
xy xy xy, x X xy,y

~xz xiz xz~ x~ y+z, x2 2 + z ,xyx~ xzy IY

Cy C + X + S-yzY+S 2- ' ~yz,x 2 + yz ,y 2 y 2 2

rx =r 0

r = r 0 (IV. 7)

x xx xx, x xx ly

0 o +1 0Pyy yy yy, x yy,y

oi 0 X+10
xy xy xy, x xy,y

z z z,x x~ xz,x2 2 x~z,xy 2 xz,y 

From Eq. (IV.3), EQ. (IV.6), and Eq. (IV.7) we can generate a

relationship between the strain Taylor's series vector {0} and the

displacement Taylor's series vector {a}.

{e} = [A ] {a} (IV.8)
53x1 60x1

where

Ci Co u ,x Ea2; 0 v 0 a;
x x 2; c2 Eyy y 9
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C3 (Cy + v0,o a3+ 8  - 0 0 a
e xyI ) 2 e4 K a xx 32;

K 0 K(1 Y+ YX
c5 yy a39 ; e6  Kxy yx2

0 0 ~0 00
E7 xx,x uX2 a4 ; E8  Exxy ,xy a5; c9  cy~

C E0 =V 0 10u + Vo2) a+10 yy~ y a12; ell exy,x 7(u xy 5 1

e12  Cxy,y = j(u0y2 + v0,X,) Ha6 + al1 ; C13 EKXXX = 4

K0 0, 0 x 0C14 = xxv = ~xxy a35; C1 5  'xyy 41;

0 0 .0 =1,
C1 6  yy~ 4Y,3Y a4 C 1  x,xy + 0P~2

a35 40
2'

C K 0 1 = Oy + 0 a36+24 918 = xy,y x4 2

0 0 0 0 0 a +a

C 1  =Cz- a 2 E ~
e z 43; e20  xz ,x x a14  a31;

20.00. 0a+a2E w2+ 0
C 2 1  yz Cy+ 1 7 2 2  xz~ Wx +x,X

=a + a
16 32;
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2-" wO a +0 a2 wO

£23 - 2 xz,y ,xy xy - a17 + a33 ; £24 yz,x xy

+4o
x a + a38+ yx -17 a38;

c25 _=2cyz,y =WO y2 + 0 az + a o 0 a
2yy a 18  a39; £26 ,x a44 ;

£27 - 45

o 0 0£28 - ,x2 -a 46; £29 - zxy a47; £30 -z,y 2  a48

o 1 0 a14  a3  1c31 - rx = ,x x = -

0 10 0) a1 5  a3 7E32 rY - ,Y y y - -2 a

£33 - lxz a49 ; £34 axz,x 50 ; £35y a51

6 0 a 0 a 0
36 -xz,x 2 -a 52 ; E37 xz,xy - 53; £38 -- xz,y2 a54 ;

c39 yz a55 ; c40 = vyz,x a56 ; £41 y a57;

£42 Uyzx2 - a58; £43 yz,xy a59; £44 -yz,y2 a60;

0 =o a0 _ 0 =0 0  0
45-yy x,x a20; 46 xx,x x~x = 22; c47 - xx,y

00

0= a£
xxy - 23;

.. ..-. --. -.
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-. 0 0 0 =0 a 0
-4 8  -y y y ,y 2 7 ; £4 9 -y y a29  ; £50 yy ,y

o0 0 1 0 +60 a21 +a51

ay,y2  
3 0 ; '51 - xy 2 x,y y,x) 2 1

0 i(0 +6 a23+a28 an£52 - o :I( o + 6o 2) - 2 ;8 and
5 xy,x 2 x,xy y,x2  2

F 0 2+ 0 OY%) 24 29

£53 - xy,y o = x 0y,yxy 2

The rigid body motions of the structure {b} can also be expressed

in terms of the displacement Taylor's series vector {a}.

{b} [Ab]{a} (IV.9)

where
{b}T (uo vo wo  o o e, Q);

10 1u,y - V x); and (ex,y y,x

Equation (IV.8) is merged with (IV.9)

: [a} 
(IV.10)

This equation is inverted.

fa} [BC Bb] (IV.11)E: b

where

Bbl 1.0; Bb3 ,6 = 1.0; Bb7 ,2 = 1.0; Bb8 ,6 = -1.0; Bb1 3 3 = 1.0;

2.
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B = -1.0; B = -1.0; B = 0.0; B = -1.0;.. b14,4  Bb15,5 Bb21,7 Bb25,5=

Bb26, 7 = -1.0; B = 1.0; Bb3 7 4 = 1.0; Bc2 ,1 = 1.0;

B-3,3 = 1.0; B 4,7= 1.0; BE5,8 1.0; Bc6,9 = -1.0; Bc6,12= 2.0;

BC8,3 1.0; B.0; Bei0,11= 2.0;

Bi 1 9 = 1.0; BE12,10 = 1.0; B 14,20 = 1.0; BE15 ,21 = 1.0;

B16,22 = 1.0; B 17,6 = 1.0; B 17,24 = 0.5; Bc17,23 = 0.5;

1 =8,25 -1.0; BE19,20 = 0.5; B c 9 3 1 = -1.0; Bc2 0 45= 1.0;
U

Bc2l,51 = 1.0; B.22 ,46 = 1.0; Bc23 ,47 = 1.0; Bc24 ,49 = 1.0;

Bc24 ,53 = 1.0; B-25 ,21 = 0.5; B 25 ,32 = -1.0; Be26,51 = 1.0;

27,4= 1.0; = -1.0; B 27,52 = 2.0; Bc29,49 = 1.0;

Bc30 ,50 = 1.0; B 3 2 , 4 = 1.0; Bc36 6 = 1.0; BE3623 - 0.5;

Be36,24 = -0.5; Bc34 ,13 = 1.0; BE35,14 = 1.0; B,36 ,15 = -1.0;

BC36,18 = 2.0; B 38 , 6 = 1.0; BE39,5 = 1.0; B 40,14 - -1.0;

I.J



73

15=1. 0; B 1.0;16B= 1.0

E.:. C40,17 = 2.0; B41,15 E042,16 e47,29 =

Bc48,30= 1.0; Bc49,33 = 1.0; B 50 34 = 1.0; Bc51,35 = 1.0;

B 52 ,36 = 1.0; B 53 ,37 = 1.0; Bc54 ,38 = 1.0; Bc55 ,39 = 1.0;

B = 1.0; Bc57 41 = 1.0; Bc58 42 = 1.0; Bc5 ,43  1.0;

B 60 ,44 = 1.0; and all other terms of B and Bb are equal

to zero.

Substituting Eq. (IV.11) into Eq. (IV.5) and taking advantage of the

fact that the strain energy is independent of rigid body motion of

the structures gives the expression for the strain energy of a unit

cell in terms of the strain Taylor's series coefficient vector {}.

Ucell 1 {}T [K]{E} (IV.12)

where

[Ks] : [B ]T[T]T[KcelI][T][Be]

Strain components in the plane connecting two unit cells must have

identical values to maintain compatability. This is satisfied by

taking the origin of the Taylor's series expansions at the center of

the unit cell and requiring that the expansions for these strain

components be even, insuring that these strains are identical on

opposite sides of the cell. Therefore, the odd derivatives of

VA ,*
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*these strain components are set to zero by removing the appropriate

rows and columns from [K ].

E0 0 = o 0 = =0 (IV 13)

xzy, = Cyz,x z,x z,y -jxxy yy,x "

The strain gradients are retained in the Taylor's series expansions

to allow internal motion within the cell. There is no loading

associated with these strain gradients and the partial derivative

of the strain energy with respect to these terms should be zero.

"""cel 1 cel 1 ce 1 3Uel1cell cel Ucell

0t 0 0  0t 0 0
DCxx,x Dxex,y aeyy,x Dcyy,y DExyx Dexy,y

acell~ aUcell a- acell a- cell a__ cel 0Ucell ... Ucell =aUcell =aUcell aUcell = 3 Ucell = 0

0 0 0t a0 0x~ y 0 0 =

xx X yy,x yy 'y xyIx xyly

B~De 1 Ucl1 Ucl1 Ucell a1 Ucell a1 Ucell 0
ac€ 0 a)€O ac) 0c 0 acO o

z xz,x yzIy , x2  z~xy CzIy2

(IV.14)

aU cell aUcell au cell cell _ aucell 0.. 0 0 0 0 0z

apapa1~2 -P; a
..,@xz xz,x x,y Uxz,x2 X zIxy xz o

aucell aUcell aucell aUcell aUcell aUcell 0

."yz = yzx =ayz,y = yzx 2 = yzxy yz,y

_____ aUcl a Ucl a___
U cell c el l aUcell 0
0 0 0 0ap a ap
xx,x yy,y xy,x xy,y

Using Castigliano's Theorem, this is the same as requiring that the

' -': row of [Ks] corresponding to the strain gradient times {0} be equal
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to zero. [KC] is partitioned so that all of the constrained terms

in Eq. (IV.1) fall at the end of the vector {F}.

c r T FKC Ke 1 ery~
Irr r ,

cel I 2 .0 ro Kcoo Co IVI

where { =(Cx, , , S S0 x K0 0 Kxy' cxz' , yz' ' xx yy
r xx yy XYxy yy x Zr y xSy

U2 ) are the strain terms which are constrained; and {C T = (Co
xy 0xxx,

Cxxy, S are the strain terms constrained in Eq. (IV.14).

The constraints, Eq. (IV.14) are then rewritten.

fo=[KCroT KCr (IV.16)

This equation is rewritten as an expression for {ed the constrained

strain vector.

{Co  = -[KCoo0l[K Cro {Cr} (IV.17)

Substituting Eq. (IV.17) into Eq. (IV.15) yields the strain energy

expression in terms of the retained terms.

Ucell 2 { E }T [Ke] {C (IV.18)

where

[K eq] =[Kr - [K ][K 1-1[KC ]T

rr ro 00 ro
13x13

- ° --i w ~~........ .........°,. . . . ............... .-. ". ." °" " . . .
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It is assumed that [K I divided by the area of the unit cell (Acei
eq celeq

forms the constitutive matrix of the continuum at all points

Ustructure J r} Ace {C ~r dA (IV.19)

Area of
the structure

Equivalent Finite Element Model

The 16 d.o.f. rectangular plate element15 is modified to include

in-plane, transverse shear, and micropolar rotational terms yielding

a 40 d.o.f. element. The interpolation functions are assumed as

linear except for the out-of-plane displacement which is assumed as

a bicubic Hermite polynomial.

uo = c 1 + c2x + c3y + COXY

v= c5 + C X + c c +cxy

0 c 10 x+ C 1y + cl 2 + c13xy + c14y 2 + c15 x3

+ c 16 x2y + C17 xy2 + c18y 3 + c 19X3y + C20x2y2 + c21 xy3

+ C22 x3y2 + c 23X2 y3 + c 24 x3y3  (IV.20)

2e x =c 25 + c 26 x + C 27y + c28xy

2c9  =c + c 0x + Cyz 2 30 31y +c 32xy
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00= + c+ x +
., x c 33  34  35Y c36xY

Cy c37 + C38X + C3 9Y c40xy

Using the strain definition, Eqs. (IV.6) and the interpolation

functions (IV.20), the strain vector {c d is related to the

interpolation coefficient vector {c}.

{E = [C]{c} (IV.21)

where

1C1  0 07

[C] : 0 C2  0

0 C23  C3

ro 1 0 y 0 0 0 0
[C1]  0 0 0 0 0 0 1 x

0 0 0.5 O.5x 0 0.5 0 0.5x_

0 0 0 -2 0 0 -6x -2y 0 0 -6xy

0 0 0 0 0 -2 0 0 -2x -6y 0

[C 0 0 0 0 -1 0 0 -2x -2y 0 -3x2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

%,

4WJ
I1

'p

.-.'.>-
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j 1:2 2 3~y 1::
[-2x2 -6xy -2x3  -6x2y -6x3 y

0 0 0 0 0

L0 0 0 0 0 -

010y 0 0 00]

0 0 0 0 0 0 0xi

[C2  ~ 0 0 0.5 0. 5x 0 0.5 0 0. 5y

x y xy 0 0 0 0

0o 0 0 0 1 x y X

23 LC23a C 23b c 23 cj

2 0

[C 2 3  a]0 10[ y 0 x 22xy 3y 2X3]

V2xy2 y3  3x y2  2xy3  3x y3
[2b 2x~y 3xy3  2x3y 3x2y2  3x ~y

0l.5 0.5x 0.5y 0 0 0
0c3~ 0 0 0.5 0.5x 0.5y 0.5xy]

1k.
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-1 -x -y -xy 0 0 0 0

0 0 0 0 -1 -x -y -xy

[C31 0 1 0 y 0 0 0 0

0 0 0 0 0 0 1 x

0 0 0.5 0.5x 0 0.5 0 -0.5y

The strain energy expression, Eq. (IV.19) for the structure is used

to derive a finite element representing a portion of the structure.

Substituting Eq. (18) into Eq. (16) and limiting the integration to

a specific element gives the strain energy expression of the element.

Uel {c}T L[c]T[Keq][C]dA{c} (IV.22)Ue acell f

Area of
the element

The 40 d.o.f. of the element can be expressed in terms of the

interpolation function coefficients {c} by using Eq. (17) and the

x,y location of each node point of the element.

gel: [R]{c}

where

T gT T T T{gel} [gl g2  g3  g4 ]; (IV.23)

{gj T [u v dwi o 2Kx 2 0 eo eo
gi}T  i :ui vd x dwi- Tx d2<x~z. 2yzi xi yi]

and i refers to node c of the element.

The strain energy expression of the element is then expressed in terms

"-
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of the nodal d.o.f.'s.

I1 TUel =2{gel [Kel]{gel} I.4

where

[Kel e [ R]-T [C] T[Keq][C ]dA[R ][ Ke ] cellI

Area of
the element

The same lumped mass matrix used for the repetitive space lattice

with pinned joints Eq. (11.25) is used in this chapter.

Results

Space Lattice Structure Configuration

The hexahedral space lattice geometry (Fig. 21) is used as a

demonstration problem. The space lattice is generated by repeating

a unit cell (Fig. 22) several times in two orthogonal directions.

The initial properties of the structure were chosen to be similar

to several box truss geometries which have been developed.21 ,22

The length of each main structural member, which is equal to the

thickness of the space lattice structure, is 4 meters. The main

*structural members are 6.1 mm thick Graphite Epoxy Tubes, 11.7 cm

in diameter. The diagonal braces are aluminum tubes, 5.657 meters

long with a thickness of 0.5 mm and a diameter of 1.58 cm. The

natural frequencies and mode shapes are calculated for a repetitive

plate-like space lattice structure with four cells in each direction.

The static displacements are calculated for a centrally loaded

plate-like space lattice structure with eight cells in each direction.

. . . . . . .. . ... *- - -*-....V
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Figure 21. Hexahedral Space Lattice.

A
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L h=4.m-
MEMBER CROSS

SECION
MAIN STRUCTURAL MEMBERS

(GRAPHITE EPOXY)
to=6.1mm do=il.7cm Ao22.35cm 2

10=380.25 cm 4 E=20 .0x lO0 O N/m2
p 1550 kg/m3

- -:- DIAGONAL BRACES
(ALUMINUM)

t!O: O.5mm  do=l.58cm Ao=25.0mm 2

10 =781.25mm4 E= 7.17x 1I 0 N/m2

p = 2768 kg/r 3

Figure 22. Hexahedral Space Lattice Unit Cell.

. . . . . . . . . . . . . . ..-.
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Natural Frequencies and Mode Shapes

The natural frequencies and mode shapes of this space lattice,

with free edge conditions, are calculated using three different finite

element models. The most accurate solution among the three is the

"detailed" finite element mode, which is obtained using NASTRAN,

with each frame member of the structure modelled as a single CBAR

type finite element. Guyan reduction is used and the six rigid body

modes, are calculated using the NASTRAN free body support option,

Eqs. (11.7) to (11.16). The flexible natural frequencies and mode

shapes are shown in Fig. 23 as the solid curves. Four sets of

frequencies are obtained by assuming four values of A/A0 , where the

-3 2' value of cross sectional area Ao = 2.235x10 m for the main

structural members is used as a basis for nondimensionalization.

It is assumed that the ratios of cross sectional areas and moments

of inertia between the main structural members and the diagonal

braces are as follows:

A I t d A 2

0-89.4; and -- (
"IA t d AoS10 t 0  0

Therefore the main structural member properties scale as follows:

A 1/2 A 1/ 2  A 2:.>]t : ( -) to; d : do I : (T-) (IV.25)

A 0 0 0

the diagonal brace properties also scale using Eq. (IV.25). The

equivalent micropolar plate finite element developed above is then

used to calculate the natural frequencies and mode shapes which appear



AD-RI68 879 EQUIVALENT CONTINUUM FINITE ELEMENT MODELLING OF 2/2
PLATE-LIK~E SPACE LATTICE STRUCTURES(U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFB OH S E LAMBERSON RUG 85

UCLASSI FIE ITN/N85-111D F/G 2212 L

MEEEMOEEEEEI

mE.....



11111 A1 U-01

1111-

MICROCOPY RESOLUTION TEST CHART
NAT"OAL BUR~EAU-OF STANDARDS- 1963-A



84

as the dashed curves in Fig. 23. The agreement between the results

obtained by the micropolar and the detailed finite element models

is good, especially for the relative small number (four) of cells

assumed. The equivalent micropolar plate finite element can be

reduced to a transverse shear type plate finite element by removing

the terms of [K eq] associated with the micropolar strains and con-

straining ex and ey to zero. The natural frequencies and mode shapes

calculated using this equivalent plate model are shown as the dashed

dotted curve in Fig. 23. It should be noted that except for the

first flexible mode the transverse shear continuum plate model

frequencies deviate significantly from those results obtained by

the micropolar plate finite element model and the detailed finite

element model. These discrepancies are small for very flexible

tube members (as A/A0 is small) and they increase as the tube

members become stiffer (as A/A0 increases).

Static Analysis

The static deflection is also calculated using these three

different finite element models. The detailed model described above

is used to model a quadrant of a statically loaded plate-like space

lattice structure with a central concentrated load normal to the

plane of the structure. The structure is constrained against

translation normal to its plane at each corner. As in the calculation

of the natural frequencies, four values of cross section areas

(A/A0) are used. The resulting nondimensional central deflection

(w/h) is shown as the solid curve in Fig. 24, where h is the thickness
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DETAILED FIIEELEMENT MODEL

EQUIVALENT PLATE FINITE ELEMENT MODELS
I. 15 -

- -WITH MICROPOLAR TERMS
- -WiTHOUT MICROPOLAR TERW~-,

NODAL LINES

4=4

MOED

0.0 0.50.L.7 .

A /A.

Figure 23. Flexible Natural Frequencies
and Mode Shapes.
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20-

X\ \

.\

-~ to DETAIL ED\.

FINITE

MODEL

•~ ,5 - EQUIVALENT PLATE -
FINITE ELEMENT MODELS .
--- WITH MICROPOLAR TERMS ".
-- WITHOUT MICROPOLAR TERMS

0 0.25 0.5 075 1.0

A/Ao

Figure 24. Nondimensionalized Central Deflections of
a Corner Supported, Centrally Loaded
Space Lattice.

:-'r.7.
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of the plate-like lattice structure as shown in Fig. 22. The

micropolar finite element models, with and without the micropolar

rotational terms, are also used to calculate the static deflections

which are shown in Fig. 24 for the four cross sectional areas as the

dashed and dashed-dotted curves, respectively. As in the case of the

natural frequencies the results obtained using the micropolar

finite element model agree well with those obtained using the

detailed finite element model. Both sets of results deviate

significantly from those obtained by the finite element model that

omits the micropolar rotational degrees of freedom as the structural

members become stiffer (as A/Ao increases).

Conclusion

A method has been developed to allow repetitive plate-like space

lattice structures with rigid joints to be modelled effectively as

an equivalent micropolar plate continuum. A micropolar plate

finite element has been developed using the strain energy expression

of this continuum model. This allows considerable simplicity and

flexibility in tresting geometry, boundary conditions, attachments,

and other structural complexities.

It is found that the present micropolar plate finite elements

can accurately predict the static deflection and natural frequencies

of the plate-like lattice structures. This is done by comparing the

results with those obtained using a detailed finite element model

where each structural member is modelled using one CBAR (6 d.o.f.'s

per node beam-column) element in NASTRAN. The present example study
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* shows that the micropolar plate finite element is considerably more

accurate than the one without micropolar rotation but with transverse

shear d.o.f.'s.

While numerical results have only been generated for structures

built with frame members connected by rigid joints, the method would

certainly apply to a general class of repetitive plate-like structures

with either rigid or pinned joints. The present unit cell modelling

method as described in Eq. (1) could certainly be generalized to

include plate, membrane, or other types of finite elements, without

changing any subsequent portion of the method. Logical next steps

would include incorporating semirigid joints into the continuum

model, extension of the method to model member and joint damping

as continuum properties for forced response analysis, including

geometric nonlinearities, and applying this finite element model

for feedback control system design.

I%%
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-I-., * & f 4'f

.'.t ft t f t '
,

.r



89

*-7

CHAPTER V - CONCLUSIONS

Further Developments

In this section several potential extensions of this work will

be discussed. In general, the theoretical basis of the idea is

presented without supporting numerical examples.

Semirigid Joints

The first extension considered is the application of the

micropolar plate finite elements developed in Chapter IV to model

large repetitive plate-like space lattices with semirigid joints. In

order to use this element for these type structures, the detailed

finite element model of the unit cell would be developed with each

frame member modelled as a single beam-columm type element as before.

However, there would be a separate nodal point at each joint connected

to each element. The value of the translational displacements for

each of these nodes would be equated.

ui= u = ui = uimi
*' 2

v. = v i = vim i  (V.1)
1 1 12 1 1

W wi = Wi  : ... wim i1 2

where

/-0

- .. , ' . * '.°
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(uij. vi, wij) are the translations along (x,y,z) of

the jth frame member; and

mi is the number of frame members of the unit cell which

intersect at joint i.

Each rotational d.o.f. would be connected with rotational spring

elements of zero length (Fig. 25). The stiffness matrix of such a

spring element in terms of the torsional stiffness (J) of the spring
12

is given by:

J -J
[Krot'spr] = I i  "d (V.2)

with this stiffness matrix connecting the rotational d.o.f. pairs

(ax ,x.), ( y and ( , where (Bx , y , Bz.xij xj "' yj Bzi Bz iji ij Yj lj

are the rotational d.o.f. about the (x,y,z) axes at joint i for the

jth frame and j varies from 1 to the number of frame members of the

unit cell intersecting at joint i (mi).

The equations of constraint Eq. (V.1) would be used to

substantially reduce the order of the stiffness matrix [Kcell] of

the unit cell. First the d.o.f.'s {q} are reorganized into three

vectors {qr } containing one set of translation and rotation d.o.f.'s

at each joint, {qo } containing the remaining rotational d.o.f.'s

at each joint, and {qc} conaining the remaining translational

d.o.f.'s at each joint. The matrix [Kcell] is similarly reorganized

and partitioned.

. .. . . °' . ° . ° .. . ..- . . .



91

z

Joint

Nodal Points ii1,i2,

4 are collocated
at (x1,yjgz,

6 5

Figure 25. Semirigid Joint Model.

. . . . . . . . .. . . . .~ .C . . ... . . . . . . . . .
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" Krr Kro Krc
[Kei T K o K(V.3)

T[Kcell ]  K ro K00 Koc

T TLKrc K ocT K]cc

The equality constraints Eq. (V.1) can be rewritten

{qc} = [G]{q r}  (V.4)

The strain energy expression is given as:

T -

q r Krr Kro Krc qr

U 1 q KT K 0  qo (V.5)Ucell 1 qo ro 00 oc0

r L c oc cc q

Substituting constraint Eq. (V.4) into the strain energy expression

Eq. (V.5) yields an equivalent strain energy expression.13

I

1 q rT Krr Kro q qrJcell 2RT R q(V.6)

~~0  Lro 00 0~

where

[Krr ]  [K rr] + [K rr] + [K rc] [G] + [G] T[K rcT + [G]T[Kcc][G];

[Kro]: [Kro] + [G]T [Koc]T; and [ROO ] = [KOO]

For the micropolar plate finite element which is developed in Chapter

IV the mass associated with the rotational d.o.f. at the joints of
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the unit cell is ignored since the "lumped mass" description of

each individual frame member is used. This element is shown to

yield good natural frequencies and mode shapes using a specific

space lattice geometry. It is consistent with this assumption to

utilize static condensation Eq. (11.4) to reduce the strain energy

expression to contain only terms associated with {qr

rr
U, Ucell = q [ e l]{q} (V.7)

where

[KceI -  rr] - [ro][Roo]-Rro ]T
- o 0 r

It can be seen from Eq. (11.5) that the Guyan reduction is exact if

there are no mass terms associated with the omitted d.o.f.'s

([Mro] = 0 and [Moo = 0). Therefore, the reduction in Eq. (V.7)

causes no additional error beyond that generated when lumped mass

matrices are used for the beam-column elements. It should be noted

that the strain energy expression Eq. (V.7) is equivalent in both

order and form to Eq. (IV.1) and could be used to derive a micropolar

plate finite element for repetitive plate-like space lattices with

semirigid joints. These results would be compared with those

obtained with a detailed finite element model developed for the

entire structure in the manner described above for the unit cell.

Numerical results were not generated using this method since the

resulting detailed finite element model is larger than can be

effectively analyzed using NASTRAN as installed at Purdue University.

..........................................

. . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . .
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Consistent Mass Matrices

The results obtained in this study were obtained using lumped

mass matrices for the individual frame members. Such matrices contain

half the mass of the member at the diagonal location associated with

each of the translation d.o.f. of the element. This ignores any

rotatory inertia effects within the individual frame members. The

results of the numerical examples in Chapter IV show that the lumped

mass assumption for the individual members is reasonable. One

obvious extension of this work is to develop the mass matrix in

terms of consistent mass matrices for each frame member. One way

to implement this would be to assume that the spatial derivatives

of the velocity components at the plate midplane are zero, implying

that the velocity components are only functions of time for each

unit cell. Using this assumption the kinetic energy expression of

the unit cell in terms of the joint velocities and angular velocities

can be transformed to a kinetic energy expression in terms of the

midplane velocity components. This has been done for the beam-like
8

micropolar continuum representation. This kinetic energy expression

could be integrated over each element to yield the mass matrix of

each element.

" - An alternative method would be to apply the consistent mass

matrix method (where the kinetic energy expression is used to generate

the mass matrix of the element in the same manner that the strain

energy expression is used to generate the stiffness matrix of the

element) to the equivalent model. 3  The kinetic energy expression

of the unit cell calculated using a detailed finite element model

. • •
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- .- of the unit cell is used as the initial kinetic energy expression

for the unit cell.

2K.E. {}TF [ ]{q} (V.8)cell - Mcell {

where {q} is the vector of nodal velocities of the unit cell and

[Mcell] is the mass matrix of the unit cell from the detailed finite

element model of the unit cell. If identical transformations,

reductions, and integrations were applied to this expression that

were used in Chapter IV with the strain-energy expression Eq. (IV.1),

the result would give the consistent mass matrix of each micropolar

plate finite element [Mel]defined as an analog to [Kel] of Eq. (IV.24).

Joint and Member Damping

There is considerable ongoing research to develop space lattice

frame members and joints with significantly larger damping than that

of traditional metal components.23  In this study all of the control

system results have been generated using an assumed value of modal

damping (c = 0.005). For structures with larger damping associated

with specific motions of the structure, it might be desirable to

include damping effects in the continuum model. One method of

doing this would be to build a detailed model similar to that

"' derived in the paragraph above dealing with rigid joints except

that the element damping matrices would be assembled and condensed

to yield a system damping matrix for the unit cell. This unit cell

damping matrix could be substituted for the unit cell stiffness

matrix in Eq. (IV.1). As for the consistent mass matrix in the

preceeding paragraph, the same procedure used to transform, reduce
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and integrate from the unit cell stiffness matrix to the micropolar

plate finite element stiffness matrix, could be used to calculate

the damping matrix of each micropolar plate finite element. Once

assembled this would yield the equation of motion of the structure

as;

[K]{q} + [B]{4} + [M]{ } = {P} (V.9)

where

[K] is the stiffness matrix of the micropolar plate

finite element model;

[B] is the damping matrix of the micropolar plate

finite element model;

[M] is the mass matrix of the micropolar plate

finite element; and

{q} is the vector of nodal displacement d.o.f.'s associated

with the micropolar plate finite element model of the

space lattice structure.

This equation could be solved to yield complex eigenvalues and

eigenvectors, which could be used in a similar manner to that

described in Chapter II for feedback control system design and system

performance. Alternatively, structural dynamic response could be

generated using direct integration analysis methods.

* .1.: >::.::.: ./ ::::> ~::::.i " " T. i :i )i:::/ : -:.::, L:I I - ' - - :.: :-"::::T!:: ::::;
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Application to Non-Lattice Type Structures

While the equivalent continuum models in this study were

specifically developed for large r-.petitive space lattice structures,

their usefulness should extended to many other types of structures.

As an example, one such application will be discussed. Large

mirrors are often designed as a surface plate which can be coated,

supported by a backup structure which is often made up of web type

structure (for example, see Fig. 26). Detailed finite element

models of this type of structure can be too large and cumbersome

to use effectively. As an alternative, the micropolar plate finite

element developed in Chapter IV could be calculated from the

stiffness matrix of the unit cell based on a detailed model of the

unit cell (such as in Fig. 27) and used to solve for the structural

response of the large mirror.

Summary

A basic procedure to analyze large repetitive plate-like

space lattice structures with pinned joints using finite element

models of equivalent continuum representations of the strain energy

and kinetic energy of the structure has been developed and implemented.

By retaining the transverse shear deformations in the finite element

formulation, the equivalent plate finite element models are found

to give modal results consistent with those generated from a detailed

e- truss bar element model of the space lattice structure even for small

numbers of unit cell repetitions.

The modal models resulting from the finite element model are

shown to serve as accurately, yet are more simplified in the control
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PORTION OF A
LARGE WEB STIFFENED MIRROR

. 7Z.-.U NIT
i CELL

BOTTOM VIEW
SURFACE PLATE--

END VIEW
SUPPORTING WEB

Figure 26. Large Mirror Example Problem.
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12 15

Figure 27. Detailed Plate Unit Cell
Finite Element Model.
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design process compared to the complex truss bar element model for

a specific large plate-like repetitive space lattice structure. This

study has shown that choosing control design models based on a modal

sequence may involve unnecessary modes. By using Modal Cost Analysis

to consider the control problem based on a sequence of lower modes,

it is found that several intermediate modes do not contribute much

to the control design.

A procedure has been demonstrated to utilize equivalent continuum

finite element modelling methods to efficiently examine the effects

of parametric variation of the cross sections of large repetitive

plate-like space lattice structures. Using a specific space lattice

structural configuration, two sets of parameter variations were

performed. In the first case, the length of all the members as well

* as the mass of the structure were held constant. This caused the

area of the surface members to be a function of the area of the

internal diagonal members. The second case involved the variation

in the thickness of the space lattice structure. Again, the length

and total mass of the structure were held constant. The allowable

buckling load of the slender internal members was held constant.

Thus the cross sectional area of the surface and internal members

-. was determined to be a function of the thickness. For both cases,

maxima were obtained in the natural frequencies and optimal

performance values of the design parameter were calculated. Modelling

the structure using the finite element continuum model is seen to

allow more flexibility in treating geometry, boundary conditions,

attachments, and other structural complexities.

'-v
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A method was developed to allow repetitive plate-like space

lattice structures with rigid joints to be modelled effectively as

an equivalent micropolar plate continuum. A micropolar plate finite

element has been developed using the strain energy expression of

this continuum model. This allows considerable simplicity and flexi-

bility in treating geometry, boundary conditions, attachments, and

other structural complexities.

It was found that the present micropolar plate finite elements

can accurately predict the static deflection and natural frequencies

of the plate-like lattice structures. This was done by comparing

the results with those obtained using a detailed finite element

model where each structural member was modelled using one CBAR

-.. (6 d.o.f.'s per node beam-column) element in NASTRAN. The present

example study shows that the micropolar plate finite element is

considerably more accurate than the one without micropolar rotation

but with transverse shear d.o.f.'s.

Several extensions to equivalent plate modelling methods have

been examined. These include techniques to allow the existing

equivalent micropolar plate finite element modelling method to

solve structural dynamics problems of large plate-like repetitive

space lattices with semi rigid joints, consistent mass matrices

for the individual frame members, and element damping for the frame

members and joints; as well as non-lattice repetitive plate-like

structures (such as mirrors). The equivalent plate modelling

methods could also be extended to include geometrically nonlinear

terms allowing buckling of the structure to be examined.
• o.

-. ."
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Conclusion

As the size and complexity of large repetitive space lattice

structure increases the need for accurate, efficient, analysis

methods to allow the structural response (both static and dynamic)

of these structures to be predicted efficiently also increases.

Developing detailed finite element models of large, complex

structures is extremely time consuming and cumbersome. Analyzing

structural response for such complex structures is also extremely

costly and for sufficiently large and complicated structures may

be impractical, particularly in the design phase where many analyses

are required. Numerous methods have been developed to simplify

*. and automate the analysis of large, complicated structures. While

these advances are crucial, particularly for large repetitive

structures, even with extremely refined software to manage the

generation, assembly, and transfer of large data files from

different portions of the structure to some system model, most

of these methods achieve the model reduction by removing internal

d.o.f.'s from portions of the structure (substructures) and

representing these portions of the structure in terms of the

deformation at the boundary points with adjacent substructures

(retaining sufficient internal d.o.f. to represent the loading and

internal dynamics of the substructure). In these methods, the

resulting model of the system is tied to the internal geometry of

the fundamental structure. In general, the locations where node

points of the system model can be loaded are limited.

-. '.
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As an alternative to potentially cumbersome detailed modelling,

numerous studies have been performed where a standard continuum

finite element (such as a plate element) is used to model a discrete

structure by using an equivalent set of fundamental properties

(such as E, v, p, t, ...). Several studies have been conducted to

develop systematic methods for determining these properties.

Recently, methods have been developed to systematically generate

constitutive matrices of equivalent continuum representations, where

higher order strain terms have been retained consistent with the

motion the unit cell of the repetitive structure is capable of.

In a few cases, these have been used with existing finite elements

to analyze specific space lattice geometries. However, in general

the equations of motion have been solved in closed form or numerically,

V usually for simply supported structures. To the authors knowledge,

no systematic effort has been made to develop higher order plate

finite elements with displacement functions specifically chosen to

be consistent with the higher order strain terms in these equivalent

continuum representations.

This research effort has extended the existing equivalent

continuum representations where necessary (no such representation

existed for large repetitive space lattices with rigid joints).

Rectangular plate type finite elements have been developed whose

displacement functions are consistent with the equivalent continuum

representation containing transverse shear deformations, with and

without micropolar strain terms. While these elements are intended

to model structures with many repeating unit cells per plate-type



104

finite element, it is gratifying to see that the elements accurately

predict the response of the current examples even for very small

numbers of unit cells per element.

The equivalent plate finite elements representing large

repetitive space lattice structures have many advantages compared

to more conventional methods. One significant advantage of this

method over detailed modelling using a substructuring method is

that the number of and location of nodal points required to model

very large, complex, repetitive plate-like space lattices is

determined by the number and accuracy of the modes required, not by
"%

the internal geometry of the space lattice. Specifically, there

is no requirement that (or advantage to) having internal node

points of the structure located at unit cell boundaries or joint

* ° locations in the lattice. Large repetitive plate-like space

lattice structures of the type considered in this study will be

used as space platforms to which will be attached various other

structural members. While solving the equations of motion of the

equivalent continuum representation of a free floating space

platform with attachments can certainly be done numerically, it

is simpler and more convenient to model the space platform as an

equivalent higher order plate-type element which can be coupled

* •C with other structural components and analyzed in the free floating

configuration using existing finite element solution techniques.

Some space lattices will be generated with different lattice

configurations in different regions of the structure. The equiva-

lent plate finite element formulation applies directly to this type

.

-A,
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of structure by simply using different higher order constitutive

matrices in different regions of the structure. While the elements

developed in this study were rectangular in shape, for simplicity,

elements of other shape could be developed using similar methods.

Thus, plate-like space lattices of arbitrary geometry can be

readily analyzed using this method.

This research represents a new philosophy to the structural

analysis of discrete structures. That is, an equivalent continuum

representation of suitable order to account for the possible motion

within a unit cell is used as a bridge connecting a repetitive

discrete structure with a consistent order discrete finite element

model of the structure. This method gives accurate results while

greatly simplifying the modelling process over more direct methods

of going from the discrete structure to a reduced finite element

model of the structure for large, complex, repetitive structures.

9- * *.. -
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* .U.APPENDIX A

Pin Jointed Truss Mode Shapes
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APPENDIX B

Parametric Study Performance Plots
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